Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901779

RESUMO

High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors. PC SM imaging is advantageous as a quick, label-free, and reproducible technique for multiplexed analysis of biomolecular interactions. PC SM sensors are characterized by a longer signal propagation at the cost of a lower spatial resolution, which makes them more sensitive than classical SPR imaging sensors. We describe an approach for designing label-free protein biosensing assays employing PC SM imaging in the microfluidic mode. Label-free, real-time detection of PC SM imaging biosensors using two-dimensional imaging of binding events has been designed to study arrays of model proteins (antibodies, immunoglobulin G-binding proteins, serum proteins, and DNA repair proteins) at 96 points prepared by automated spotting. The data prove feasibility of simultaneous PC SM imaging of multiple protein interactions. The results pave the way to further develop PC SM imaging as an advanced label-free microfluidic assay for the multiplexed detection of protein interactions.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Anticorpos , Proteínas , Técnicas Analíticas Microfluídicas/métodos
2.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014600

RESUMO

Semiconductor nanocrystals known as quantum dots (QDs) are of great interest for researchers and have potential use in various applications in biomedicine, such as in vitro diagnostics, molecular tracking, in vivo imaging, and drug delivery. Systematic analysis of potential hazardous effects of QDs is necessary to ensure their safe use. In this study, we obtained water-soluble core/shell QDs differing in size, surface charge, and chemical composition of the core. All the synthesized QDs were modified with polyethylene glycol derivatives to obtain outer organic shells protecting them from degradation. The physical and chemical parameters were fully characterized. In vitro cytotoxicity of the QDs was estimated in both normal and tumor cell lines. We demonstrated that QDs with the smallest size had the highest in vitro cytotoxicity. The most toxic QDs were characterized by a low negative surface charge, while positively charged QDs were less cytotoxic, and QDs with a greater negative charge were the least toxic. In contrast, the chemical composition of the QD core did not noticeably affect the cytotoxicity in vitro. This study provides a better understanding of the influence of the QD parameters on their cytotoxicity and can be used to improve the design of QDs.

3.
Biochimie ; 142: 168-178, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28919577

RESUMO

Physico-chemical properties of G154S, R157H and A171T mutants of αB-crystallin (HspB5) associated with congenital human diseases including certain myopathies and cataract were investigated. Oligomers formed by G154S and A171T mutants have the size and apparent molecular weight indistinguishable from those of the wild-type HspB5, whereas the size of oligomers formed by R157H mutant is slightly smaller. All mutants are less thermostable and start to aggregate at a lower temperature than the wild-type protein. All mutants effectively interact with a triple phosphomimicking mutant of HspB1 and form large heterooligomeric complexes of similar composition. All mutants interact with HspB6 forming heterooligomeric complexes with size and composition dependent on the molar ratio of two proteins. The wild-type HspB5 and its G154S and A171T mutants form only high molecular weight (300-450 kDa) heterooligomeric complexes with HspB6, whereas the R157H mutant forms both high and low (∼120 kDa) molecular weight complexes. The wild-type HspB5 and its G154S and A171T mutants form two types of heterooligomers with HspB4, whereas R157H mutant effectively forms only one type of heterooligomers with HspB4. G154S and A171T mutants have lower chaperone-like activity than the wild-type protein when subfragment S1 of myosin or ßL-crystallin are used as a model substrates. With these substrates, the R157H mutant shows equal or higher chaperone activity than the wild-type HspB5. We hypothesize that the mutations in the C-terminal region modulate the binding of the IP(I/V) motif to the core α-crystallin domain. The R157H mutation is located in the immediate proximity of this motif. Such modulation could cause altered interaction of HspB5 with partners and substrates and eventually lead to pathological processes.


Assuntos
Substituição de Aminoácidos , Mutação , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/genética , Cristalinas/metabolismo , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Peso Molecular , Domínios Proteicos , Proteólise , Temperatura , Tripsina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...